

Innovation-driven enterprise transformation towards circular battery production

KOMBIH PowerHour | Prof. Dr.-Ing. Franz Dietrich 22. July 2024

Market pull for transformation: unicorn-like numbers!

Weltweiter Markt für Batterien: Nachfrage wächst um 30 Prozent pro Jahr

16. Januar 2023 | Press Release

McKinsey-Studie mit der Global Battery Alliance: Nachfrage steigt von heute 700 GWh auf dann 4700 GWh - Engpass bei Rohmaterialien droht: Lithium ist knapp - Recycling-Markt wächst nach 2030 stark, notwendige Technologien und Geschäftsmodelle werden heute industrieübergreifend entwickelt

Political push towards transformation: traditional industrial sectors are forced to change completely!

Where to position in the battery value creation chain? Value creation along the battery life cycle(s)

Where to position in the battery value creation chain? Value creation in battery (pack) production

Where to position in the battery value creation chain? Value creation in battery (pack) production

Approaches for innovation-driven transformation and growth

(and some highly acclaimed examples)

Innovation by invention

e.g.: new chemistry, new process technology

Innovation by technology transfer e.g.: from medical, PV, print, packaging

Innovation
by new business models
e.g.: product-services systems,
extremly lean models,

purely digital models

Innovation
by establishing new markets
e.g.: extreme customization,
engineering tools,
end-of-life, second life, car-to-grid

Example: Technology innovations towards quality improvement and/or loss reduction

Where to start?

Internally

- Know your stance and reach.
 - Map existing competences, market accesses and network connections to the battery value chain → determine your proximity to be able to drive innovations in a certain niche.
 - How much would need to be added?
- Develop innovation power. Battery innovators need skills in various domains of knowledge
- Know the competition. Build up a technology radar and evaluate your "readiness" to push such innovations into the market. What is left to do technologically, organisationally and market-wise?

Externally

- Develop your radar.
 - Make sure you have sufficient inflow of insights, e.g. via networks
- Develop your visibility.
 - e.g. engage in innovation projects, engage in pilot plants as supplier or benchmark, engage as a supplier in turnkey projects
- Develop innovation partnerships.
 - e.g. team up with upstream or downstream technology suppliers

Competence heat map / distance map

- Lab scale:

 Processes at lab scale,
 mostly manually,
 For fundamental exploration studies,
 low batch size
 → Large Industry, Research Institutions
- Pilot Line:

 Industrialized equipment,
 down-scaled industrial processes,
 for fast try-outs,
 for small to medium sized batches
 → Large Industry, Research Institutions
- Production Line
 Fully industrialized equipment,
 processes at full scale
 → Large Industry

- Battery Production Pilot Lines in Germany Kompetenznetzwerk Lithium-Ionen-Batterien KLiB e.V has recently compiled a list
- Battery Pilot Lines in Europe:LiPlanet Initiative(https://liplanet.eu/)

► Battery Pilot Line at TU Berlin

Example: Cost estimation to increase technology readiness of a new fast glueing technology for battery stacking

"Decision support based on cost and risk estimation to prioritize battery cell assembly technologies"

https://doi.org/10.14279/depositonce-12333

Innovation support from political spheres: pushes and pulls

Political Push

- Regulations, Incentives
 - Recycling quota
 - Design-For-X
 ...for end-of-life,
 ...for second-life,
 ...for recycling
 - Minimization of Eco-Impact
 - Supply chains
- Transparency enables ecosystem efforts
 (Engineering Data / Lifetime Data)
 Important: Win/Win situation!

Political Pull

- Investment Support & Garantuees
- Network Support
- Innovation Money
- Support at sustainability accounting, sustainability transparency, certification, trade etc.
- Turnkey / SME cooperatives vs. cartel regulations?

Political Education / Incentives

- Development of customer awareness / behaviour
- Incentives for customer behaviour
- Incentives for companies
- Development of labour market / education market

Battery Circuit Berlin: TU Berlin Research Network for Battery Research

Our Profile

- Goal:
 Scientific network to strengthen battery research at TU Berlin and around
- Approach:
 - Networked agenda
 - Cooperation
 - Complementary infrastructure
- Research on battery (production) and recycling since 2010
- Strong regional and nationwide partnerships
- Teaching portfolio, also as further training for companies

Battery Circuit Berlin: Circular battery production – on cell level, on module level, on system leven

Our Agenda

- Systems level:
 End of life diagnosis, sorting and treatment
- Module level
 - Highly flexible assembly and disassembly
- Cell level
 - High-throughput processes and machine concepts
 - Manual vs. automated processes
 - Scale-up by cloud manufacturing principles

"Production rationalization for a more sustainable and human-friendly world"

- Handling, assembly and disassembly
- Automated and manual processes
- Fundamental research and industry innovations
- From theoretical research through modelling to full-scale experimentation

Prof. Dr.-Ing. Franz Dietrich & Team

Let's discuss your innovation and transformation challenges!

Prof. Dr.-Ing. Franz Dietrich
Fachgebietsleiter
Handhabungs- und Montagetechnik
https://tu.berlin/hamster
f.dietrich@tu-berlin.de

